A Neurocognitive Study to the Relationship between Brain Processing of Musical Rhythm and Executive-Linguistic Activation

Authors

  • وهيبة فتيحة عبد الحميد مهري-قسنطينة Author

DOI:

https://doi.org/10.70091/Atras/vol06no02.41

Keywords:

Cognitive decline, executive functions, musical rhythm, rehabilitation, synchronization, verbal language

Abstract

This paper investigates the structural and functional relationships linking musical rhythm processing with executive functions and language. Focusing on a neurocognitive perspective, it examines how specific cortical structures are activated and how this activation, influenced by the brain's processing of musical rhythm, impacts executive and linguistic functions. Using a descriptive-analytical approach to functional magnetic resonance imaging (fMRI) topography results, we synthesized findings from relevant studies. These studies consistently indicate a synchronized and hierarchical relationship between brain rhythm changes, revealing that these oscillatory patterns are susceptible to external stimulatory interventions. To clarify the role of musical rhythm, we focus on the core determinants of neuropsychological processing: time and rhythm itself. A significant number of cortical and subcortical structures are implicated in musical rhythm processing, including the frontal lobes, superior temporal lobes, hypothalamus, basal nuclei, cerebellum, and suprachiasmatic nucleus, operating within primary and secondary networks. Language function plays an intermediary role in this complex processing and is intrinsically linked to the cognitive processes activated during rhythmic processing of musical tones. This paper addresses a research gap by exploring the combined influence of executive functioning and language on musical rhythm processing. The study demonstrates a functional integration between executive and linguistic functions, enhanced by rhythmic musical processing. Furthermore, the overlap between rhythmic processing and executive function activities highlights the potential for designing novel rehabilitation strategies for language deficits or cognitive decline associated with aging.

References

Altenmüller, E. (2008). Neurology of musical performance. Clinical Medicine, 8, 410–413. https://doi.org/10.7861/clinmedicine.8-4-410

Augustus, J. L. et al. (2018). Melody processing characterizes functional neuroanatomy in the aging brain. Frontiers in Neuroscience, 12, Article 1. https://doi.org/10.3389/fnins.2018.00001

Bernard, J. A., & Seidler, R. D. (2014). Moving forward: Age effects on the cerebellum underlie cognitive and motor declines. Neuroscience & Biobehavioral Reviews, 42, 193–207. https://doi.org/10.1016/j.neubiorev.2014.02.011

Bidelman, G. M., & Alain, C. (2015). Musical training orchestrates coordinated neuroplasticity in auditory brainstem and cortex to counteract age-related declines in categorical vowel perception. Journal of Neuroscience, 35(3), 1240–1249. https://doi.org/10.1523/JNEUROSCI.3292-14.2015

Bidelman, G. M., & Mankel, K. (2019). Reply to Schellenberg: Is there more to auditory plasticity than meets the ear? Proceedings of the National Academy of Sciences, 116(7), 2785–2786. https://doi.org/10.1073/pnas.1820437116

Bispham, J. (2006). Rhythm in music: What is it? Who has it? And why? Music Perception, 24(2), 125–134. https://doi.org/10.1525/mp.2006.24.2.125

Branstetter, R. (2014). The everything parent's guide to children with executive functioning disorder: Strategies to help your child achieve the time-management skills, focus, and organization needed to succeed in school and life. Adams Media.

Brown, R. M., Zatorre, R. J., & Penhune, V. B. (2015). Expert music performance: Cognitive, neural, and developmental bases. Progress in Brain Research, 217, 57–86. https://doi.org/10.1016/bs.pbr.2014.11.021

Bugos, J. A., Perlstein, W. M., McCrae, C. S., Brophy, T. S., & Bedenbaugh, P. H. (2007). Individualized piano instruction enhances executive functioning and working memory in older adults. Aging & Mental Health, 11(4), 464–471. https://doi.org/10.1080/13607860601086504

Buzsáki, G. (2006). Rhythms of the brain. Oxford University Press.

Caballero, H., McFall, G. P., Wiebe, S. A., & Dixon, R. A. (2021). Integrating three characteristics of executive function in non-demented aging: Trajectories, classification, and biomarker predictors. Journal of the International Neuropsychological Society, 27(2), 158–171. https://doi.org/10.1017/S1355617720000833

Cason, N., Astésano, C., & Schön, D. (2015). Bridging music and speech rhythm: Rhythmic priming and audio–motor training affect speech perception. Acta Psychologica, 155, 43–50. https://doi.org/10.1016/j.actpsy.2014.12.002

Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844–2854. https://doi.org/10.1093/cercor/bhn042

Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101. https://doi.org/10.1146/annurev.psych.093008.100427

Cohen, R. A., Barnes, H. J., Jenkins, M., & Albers, H. E. (1997). Disruption of short-duration timing associated with damage to the suprachiasmatic region of the hypothalamus. Neurology, 48(6), 1533–1539. https://doi.org/10.1212/wnl.48.6.1533

Deco, G., & Thiele, A. (2009). Attention: Oscillations and neuropharmacology. European Journal of Neuroscience, 30(3), 347–354. https://doi.org/10.1111/j.1460-9568.2009.06833.x

Degé, F., & Kerkovius, K. (2018). The effects of drumming on working memory in older adults. Annals of the New York Academy of Sciences, 1423(1), 242–250. https://doi.org/10.1111/nyas.13685

De Pretto, M., & James, C. E. (2015). Principles of parsimony: fMRI correlates of beat-based versus duration-based sensorimotor synchronization. Psychomusicology: Music, Mind, and Brain, 25(4), 380–391. https://doi.org/10.1037/pmu0000123

Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1146/annurev-psych-113011-143750

Erences, I., & Wang, X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90(3), 1195–1268. https://doi.org/10.1152/physrev.00035.2008

Escoffier, N., Herrmann, C. S., & Schirmer, A. (2015). Auditory rhythms entrain visual processes in the human brain: Evidence from evoked oscillations and event-related potentials. NeuroImage, 111, 267–276. https://doi.org/10.1016/j.neuroimage.2015.02.024

Evers, S. (2023). The cerebellum in musicology: A narrative review. The Cerebellum, 22(1), 1–11. https://doi.org/10.1007/s12311-022-01391-7

Ever-changing cycles of musical pleasure: The role of dopamine and anticipation. (2012). Psychomusicology: Music, Mind, and Brain, 22(2), 152–167. https://doi.org/10.1037/a0031126

Fabio, R. A., Caprì, T., & Romano, M. (2019). From controlled to automatic processes and back again: The role of contextual features. European Journal of Psychology, 15(4), 773–788. https://doi.org/10.5964/ejop.v15i4.1737

Fadiga, L., Craighero, L., & D'Ausilio, A. (2009). Broca's area in language, action, and music. Annals of the New York Academy of Sciences, 1169(1), 448–458. https://doi.org/10.1111/j.1749-6632.2009.04582.x

Fauvel, B., Groussard, M., Eustache, F., Desgranges, B., & Platel, H. (2013). Neural implementation of musical expertise and cognitive transfers: Could they be promising in the framework of normal cognitive aging? Frontiers in Human Neuroscience, 7, Article 693. https://doi.org/10.3389/fnhum.2013.00693

Fauvel, B., Groussard, M., Mutlu, J., Arenaza-Urquijo, E. M., Eustache, F., Desgranges, B., & Platel, H. (2014). Musical practice and cognitive aging: Two cross-sectional studies point to phonemic fluency as a potential candidate for a use-dependent adaptation. Frontiers in Aging Neuroscience, 6, Article 227. https://doi.org/10.3389/fnagi.2014.00227

Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writing, 24(4), 230–235. https://doi.org/10.1179/2047480615Z.000000000329

Fjell, A. M., Sneve, M. H., Grydeland, H., Storsve, A. B., & Walhovd, K. B. (2017). The disconnected brain and executive function decline in aging. Cerebral Cortex, 27(3), 2303–2317. https://doi.org/10.1093/cercor/bhw082

Foster, R. G., & Kreitzman, L. (2005). Rhythms of life: The biological clocks that control the daily lives of every living thing. Yale University Press.

Fujioka, T., & Ross, B. (2017). Beta-band oscillations during passive listening to metronome sounds reflect improved timing representation after short-term musical training in healthy older adults. European Journal of Neuroscience, 46(8), 2339–2354. https://doi.org/10.1111/ejn.13684

Fujii, S., & Wan, C. Y. (2014). The role of rhythm in speech and language rehabilitation: The SEP hypothesis. Frontiers in Human Neuroscience, 8, Article 777. https://doi.org/10.3389/fnhum.2014.00777

Gebauer, L., Kringelbach, M. L., & Vuust, P. (2012). Ever-changing cycles of musical pleasure: The role of dopamine and anticipation. Psychomusicology: Music, Mind, and Brain, 22(2), 152–167. https://doi.org/10.1037/a0031126

Gooding, L. F., Abner, E. L., Jicha, G. A., Kryscio, R. J., & Schmitt, F. A. (2014). Musical training and late-life cognition. American Journal of Alzheimer's Disease & Other Dementias, 29(4), 333–343. https://doi.org/10.1177/1533317513517048

Gollan, T. H., & Goldrick, M. (2019). Aging deficits in naturalistic speech production and monitoring revealed through reading aloud. Psychology and Aging, 34(1), 25–42. https://doi.org/10.1037/pag0000309

Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893–906. https://doi.org/10.1162/jocn.2007.19.5.893

Grover, S., Nguyen, J. A., & Reinhart, R. M. G. (2021). Synchronizing brain rhythms to improve cognition. Annual Review of Medicine, 72, 29–43. https://doi.org/10.1146/annurev-med-060619-022857

Groussard, M., La Joie, R., Rauchs, G., Landeau, B., Chételat, G., Viader, F., Desgranges, B., Eustache, F., & Platel, H. (2010). When music and long-term memory interact: Effects of musical expertise on functional and structural plasticity in the hippocampus. PLoS ONE, 5(8), e13225. https://doi.org/10.1371/journal.pone.0013225

Groussard, M., Viader, F., Landeau, B., Desgranges, B., Eustache, F., & Platel, H. (2014). The effects of musical practice on structural plasticity: The dynamics of grey matter changes. Brain and Cognition, 90, 174–180. https://doi.org/10.1016/j.bandc.2014.06.013

Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson's disease: Networks, models and treatments. Trends in Neurosciences, 30(7), 357–364. https://doi.org/10.1016/j.tins.2007.05.004

Hannon, E. E., Soley, G., & Ullal, S. (2012). Familiarity overrides complexity in rhythm perception: A cross-cultural comparison of American and Turkish listeners. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 543–548. https://doi.org/10.1037/a0027225

Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. Psychology of Learning and Motivation, 22, 193–225. https://doi.org/10.1016/S0079-7421(08)60041-9

Hausen, M., Torppa, R., Salmela, V. R., Vainio, M., & Särkämö, T. (2013). Music and speech prosody: A common rhythm. Frontiers in Psychology, 4, Article 566. https://doi.org/10.3389/fpsyg.2013.00566

Heard, M., & Lee, Y. S. (2020). Shared neural resources of rhythm and syntax: An ALE meta-analysis. Neuropsychologia, 137, Article 107284. https://doi.org/10.1016/j.neuropsychologia.2019.107284

Jackendoff, R. (2002). Foundations of language. Oxford University Press.

Kalpouzos, G., Eustache, F., & Desgranges, B. (2008). Réserve cognitive et fonctionnement cérébral au cours du vieillissement normal et de la maladie d'Alzheimer [Cognitive reserve and neural networks in normal aging and Alzheimer's disease]. Psychologie & Neuropsychiatrie du Vieillissement, 6(2), 97–105. https://doi.org/10.1684/pnv.2008.0126

Koelsch, S., Gunter, T. C., von Cramon, D. Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002). Bach speaks: A cortical "language-network" serves the processing of music. NeuroImage, 17(2), 956–966. https://doi.org/10.1006/nimg.2002.1154

Kotz, S. A., & Schwartze, M. (2010). Cortical speech processing unplugged: A timely subcortico-cortical framework. Trends in Cognitive Sciences, 14(9), 392–399. https://doi.org/10.1016/j.tics.2010.06.005

Landa, S. (2023, January 13). 5 reasons why seniors should play drums. Drumeo. https://www.drumeo.com/beat/5-reasons-why-seniors-should-play-drums/

Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119–159. https://doi.org/10.1037/0033-295X.106.1.119

Lerousseau, J. P., Hidalgo, C., & Schön, D. (2020). Musical training for auditory rehabilitation in hearing loss. Journal of Clinical Medicine, 9(4), Article 1058. https://doi.org/10.3390/jcm9041058

Madsen, S. M. K., Marschall, M., Dau, T., & Oxenham, A. J. (2019). Speech perception is similar for musicians and non-musicians across a wide range of conditions. Scientific Reports, 9, Article 10404. https://doi.org/10.1038/s41598-019-46728-1

Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001). Musical syntax is processed in Broca's area: An MEG study. Nature Neuroscience, 4(5), 540–545. https://doi.org/10.1038/87502

Mayville, J. M., Jantzen, K. J., Fuchs, A., Steinberg, F. L., & Kelso, J. A. S. (2002). Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI. Human Brain Mapping, 17(4), 214–229. https://doi.org/10.1002/hbm.10065

McInnes, A., Humphries, T., Hogg-Johnson, S., & Tannock, R. (2003). Listening comprehension and working memory are impaired in attention-deficit hyperactivity disorder irrespective of language impairment. Journal of Abnormal Child Psychology, 31(4), 427–443. https://doi.org/10.1023/A:1023895602957

Meck, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology, 18(2), 145–152. https://doi.org/10.1016/j.conb.2008.08.002

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734

Moussard, A., Bermudez, P., Alain, C., Tays, W., & Moreno, S. (2016). Life-long music practice and executive control in older adults: An event-related potential study. Brain Research, 1642, 146–153. https://doi.org/10.1016/j.brainres.2016.03.028

Nemeth, D. G., & Chustz, K. M. (2020). Executive functions defined. In D. G. Nemeth & K. M. Chustz (Eds.), Evaluation and treatment of neuropsychologically compromised children (pp. 107–120). Academic Press. https://doi.org/10.1016/B978-0-12-819545-1.00006-1

Oberauer, K. (2019). Working memory and attention - A conceptual analysis and review. Journal of Cognition, 2(1), Article 36. https://doi.org/10.5334/joc.58

Overy, K. (2003). Dyslexia and music: Measuring musical timing skills. Dyslexia, 9(1), 18–36. https://doi.org/10.1002/dys.233

Parbery-Clark, A., Strait, D. L., Hittner, E., & Kraus, N. (2013). Musical training enhances neural processing of binaural sounds. Journal of Neuroscience, 33(42), 16741–16747. https://doi.org/10.1523/JNEUROSCI.5700-11.2013

Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6(7), 674–681. https://doi.org/10.1038/nn1082

Patel, A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology, 2, Article 142. https://doi.org/10.3389/fpsyg.2011.00142

Patel, A. D. (2012). Language, music, and the brain: A resource-sharing framework. In P. Rebuschat, M. Rohrmeier, J. A. Hawkins, & I. Cross (Eds.), Language and music as cognitive systems (pp. 204–223). Oxford University Press.

Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J. (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10(6), 717–733. https://doi.org/10.1162/089892998563121

Patel, A. D., & Iversen, J. R. (2014). The evolutionary neuroscience of musical beat perception: The Action Simulation for Auditory Prediction (ASAP) hypothesis. Frontiers in Systems Neuroscience, 8, Article 57. https://doi.org/10.3389/fnsys.2014.00057

Peretz, I., Champod, A. S., & Hyde, K. (2003). Varieties of musical disorders: The Montreal Battery of Evaluation of Amusia. Annals of the New York Academy of Sciences, 999(1), 58–75. https://doi.org/10.1196/annals.1284.006

Polak, R. (2010). Rhythmic feel as meter: Non-isochronous beat subdivision in jembe music from Mali. Music Theory Online, 16(4). https://mtosmt.org/issues/mto.10.16.4/mto.10.16.4.polak.html

Popham, S., Boebinger, D., Ellis, D. P. W., Kawahara, H., & McDermott, J. H. (2018). Inharmonic speech reveals the role of harmonicity in the cocktail party problem. Nature Communications, 9, Article 2122. https://doi.org/10.1038/s41467-018-04551-8

Ragot, R., Ferrandez, A.-M., & Pouthas, V. (2002). Time, music, and aging. Psychomusicology: A Journal of Research in Music Cognition, 18(1–2), 28–45. https://doi.org/10.1037/h0094053

Rajan, A., Valla, J. M., Alappatt, J. A., Sharda, M., Shah, A., Ingalhalikar, M., & Singh, N. C. (2019). Wired for musical rhythm? A diffusion MRI-based study of individual differences in music perception. Brain Structure and Function, 224(5), 1711–1722. https://doi.org/10.1007/s00429-019-01868-y

Rossi, E., & Diaz, M. T. (2016). How aging and bilingualism influence language processing: Theoretical and neural models. Linguistic Approaches to Bilingualism, 6(1–2), 9–42. https://doi.org/10.1075/lab.6.1-2.01ros

Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 86–91. https://doi.org/10.1016/j.tics.2014.12.001

Schellenberg, E. G. (2005). Music and cognitive abilities. Current Directions in Psychological Science, 14(6), 317–320. https://doi.org/10.1111/j.0963-7214.2005.00389.x

Schirmer, A., Meck, W. H., & Penney, T. B. (2016). The socio-temporal brain: Connecting people in time. Trends in Cognitive Sciences, 20(10), 760–772. https://doi.org/10.1016/j.tics.2016.08.002

Schlaug, G. (2015). Musicians and music making as a model for the study of brain plasticity. Progress in Brain Research, 217, 37–55. https://doi.org/10.1016/bs.pbr.2014.11.020

Schmahmann, J. D. (2019). The cerebellum and cognition. Neuroscience Letters, 688, 62–75. https://doi.org/10.1016/j.neulet.2018.07.005

Schnitzler, A., & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6(4), 285–296. https://doi.org/10.1038/nrn1650

Schulkind, M. D. (1999). Long-term memory for temporal structure: Evidence from the identification of well-known and novel songs. Memory & Cognition, 27(5), 896–906. https://doi.org/10.3758/BF03198541

Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004

Strait, D. L., & Kraus, N. (2011). Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise. Frontiers in Psychology, 2, Article 113. https://doi.org/10.3389/fpsyg.2011.00113

Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434. https://doi.org/10.1146/annurev.neuro.31.060407.125606

Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience, 31(10), 3805–3812. https://doi.org/10.1523/JNEUROSCI.5561-10.2011

Teki, S., & Griffiths, T. D. (2016). Brain bases of working memory for time intervals in rhythmic sequences. Frontiers in Neuroscience, 10, Article 239. https://doi.org/10.3389/fnins.2016.00239

Thut, G., Miniussi, C., & Groß, J. (2012). The functional importance of rhythmic activity in the brain. Current Biology, 22(16), R658–R663. https://doi.org/10.1016/j.cub.2012.06.061

Tillmann, B., Janata, P., & Bharucha, J. J. (2003). Activation of the inferior frontal cortex in musical priming. Cognitive Brain Research, 16(2), 145–161. https://doi.org/10.1016/S0926-6410(02)00245-8

Torppa, R., Faulkner, A., Vainio, M., & Järvikivi, J. (2010). Acquisition of focus by normal hearing and cochlear implanted children: The role of musical experience. Speech Prosody 2010 - Fifth International Conference. https://www.isca-speech.org/archive/sp2010/papers/sp10_066.pdf

Vaquero, L., Ramos-Escobar, N., François, C., Penhune, V., & Rodríguez-Fornells, A. (2018). White-matter structural connectivity predicts short-term melody and rhythm learning in non-musicians. NeuroImage, 181, 252–262. https://doi.org/10.1016/j.neuroimage.2018.07.018

Veríssimo, J., Verhaeghen, P., Goldman, N., Weinstein, M., & Ullman, M. T. (2022). Evidence that ageing yields improvements as well as declines across attention and executive functions. Nature Human Behaviour, 6(1), 97–110. https://doi.org/10.1038/s41562-021-01169-7

Vuust, P., & Witek, M. A. (2014). Rhythmic complexity and predictive coding: A novel approach to modeling rhythm and meter perception in music. Frontiers in Psychology, 5, Article 1111. https://doi.org/10.3389/fpsyg.2014.01111

Wan, C. Y., & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity across the life span. The Neuroscientist, 16(5), 566–577. https://doi.org/10.1177/1073858410377805

Wang, X., Soshi, T., Yamashita, M., Kakihara, M., Tsutsumi, T., Iwasaki, S., & Sekiyama, K. (2023). Effects of a 10-week musical instrument training on cognitive function in healthy older adults: Implications for desirable tests and period of training. Frontiers in Aging Neuroscience, 15, Article 1180259. https://doi.org/10.3389/fnagi.2023.1180259

Wickens, C. D. (1980). The structure of attentional resources. In R. S. Nickerson (Ed.), Attention and performance VIII (pp. 239–257). Erlbaum.

Will, U. (2017). Cultural factors in responses to rhythmic stimuli. In J. R. Evans & R. Turner (Eds.), Rhythmic stimulation procedures in neuromodulation (pp. 279–306). Academic Press. https://doi.org/10.1016/B978-0-12-803726-3.00011-5

Zanto, T. P., Johnson, V., Ostrand, A. E., & Gazzaley, A. (2022). How musical rhythm training improves short-term memory for faces. Proceedings of the National Academy of Sciences, 119(41), e2201655119. https://doi.org/10.1073/pnas.2201655119

Zendel, B. R., West, G. L., Belleville, S., & Peretz, I. (2019). Musical training improves the ability to understand speech-in-noise in older adults. Neurobiology of Aging, 81, 102–115. https://doi.org/10.1016/j.neurobiolaging.2019.05.015

Downloads

Published

2025202520252025-0808-1010

Issue

Section

Articles

Similar Articles

21-30 of 49

You may also start an advanced similarity search for this article.